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STRESS INTENSITY MAGNIFICATION FOR DEEP SURFACE CRACKS 

IN SHEETS AND PLATES 

by Robert B. Anderson*, Arthur G. Holms, and Thomas W. Orange 

Lewis Research Center 

SUMMARY 

The Irwin stress intensity factor for surface cracks with crack depths less than 
half the plate thickness is extended to cases of relatively deep cracks by including the 
effect of the free surface opposite the crack.   The resulting stress intensity magnifica- 
tion factor is expressed as a function of applied load, crack length, crack depth, sheet 
thickness, yield strength, and Poisson's ratio.   In addition, a method is proposed for 
predicting those combinations of load, geometry, and material properties for which 
the plastic zone would extend completely through the thickness.   Such conditions are 
regarded as limiting on the validity of the analysis. 

The proposed analysis was applied to some published surface-crack data for speci- 
mens made from an epoxy, from an aluminum alloy, and from a titanium alloy.    The 
metals had been tested in environments of liquid nitrogen and liquid hydrogen.   The 
modified critical stress intensity factor was found to remain essentially constant (within 
±10 percent) for wide variations of the crack depth-to-length ratio and for wide varia- 
tions in the crack-depth-to-specimen-thickness ratio. 

INTRODUCTION 

The need for minimum-weight flight tankage for aerospace applications has brought 

increasing concern about failure of such vessels at pressures below the operating level. 
The use of high-strength materials and failure criteria based on yield or ultimate 
strength can give erroneously high computed margins of safety against failure.   Many 
instances of unexpected failures have been documented wherein brittle-mode fractures 
were traceable to a small crack or defect that was not detected by available methods of 
nondestructive flaw inspection.    Such brittle failures can often occur at nominal 
stresses well below the yield strength of the material. 

* Presently affiliated with Carnegie-Mellon University, Pittsburgh, Pa. 



Designing against brittle-mode failures requires that the designer be able to assess 
the crack resistance of candidate materials, and that he be able to predict the effect of 

crack size and shape on structural strength.    Such predictions can best be made if a 
convenient mathematical model of the defect is available.   Many surface cracks and 
embedded flaws have been observed which can reasonably be approximated by semiel- 

liptical and elliptical shapes, respectively. 
G. R. Irwin (ref.  1) derived an expression for the stress intensity around an el- 

liptical crack in an infinite elastic solid under tension and a correction for the effect of 
small-scale yielding at the crack tip.   He also estimated the effect of the two free sur- 
faces that are present in a finite-thickness plate containing a semielliptical surface 
crack.   His analysis is thought to be reasonably accurate when the crack depth is less 
than half the plate thickness and when yielding is restricted to a small zone at the crack 

tip. 
For thin-walled pressure vessels, the largest nondetectable flaw might not be 

small compared to the wall thickness, and the free-surface correction factor of refer- 
ence 1 might not be adequate as is evidenced by the decrease of computed fracture 
toughness with increasing crack-depth-to-specimen-thickness ratio a/t (ref.  2).   In 
order to extend the shallow-crack analysis to deep cracks, the effect of the back (un- 
cracked) surface on the stress intensity and also on the plastic-zone size at the crack 
tip must be determined.   The critical stress intensity is anticipated to be a materials 
constant (plane-strain fracture toughness) as long as the deformation at the crack tip 
is highly constrained.   If the crack tip is not remote from the stress-free back surface, 
the constraint is lacking and the computed fracture toughness may be geometry- 
dependent.    For this reason, a deep-flaw analysis should describe the conditions under 
which the assumption of a plane-strain fracture toughness might not be applicable. 

Such an analysis can have two applications.   First, for materials evaluation, one 
must know the ranges of specimen geometry and material conditions that will permit a 
valid analysis and, thereby, a useful measurement of fracture toughness.    Secondly, 
the structural designer can predict fracture load for a given flaw geometry when the 
material's fracture toughness is known.   In either case,  one must know the range of 
flaw geometry for which the analysis is usable. 

An exact and complete treatment of the problem would require the solution of a 
three-dimensional elastic-plastic boundary value problem.    Until such a solution is 
available in useful form, reasonable approximations based on available elastic solutions 
might be used to develop an expression that accounts for finite thickness and crack-tip 
plasticity in rather simple form.   One such effort is mentioned in reference 2, and 
another (which contains an indeterminate quantity that might be approximated by the 
ultimate tensile strength) is described in reference 3. 

In the present report, Irwin's analysis is modified to reflect the effects of the 
stress-free plate surfaces and the crack-tip plastic zone.   The resulting stress 



intensity magnification factor is given as a function of crack depth and length, plate 
thickness, applied stress, yield strength, and Poisson's ratio.   A method is proposed 
for estimating the conditions under which the plastic zone would extend completely 
through the thickness (this being considered an upper limit on the validity of the ana- 
lysis).   This analysis and those of references 1 and 3 are applied to several sets of 
deep-flaw data from the literature.   The results of the three analyses are compared 
as joint functions of the crack-depth-to-plate-thickness ratio and the crack depth-to- 
length ratio, over the ranges of some published data. 

ANALYSIS FOR LONG INTERNAL CRACKS 

The stress intensity factor derived by Irwin in reference 1 applies to elliptical 
cracks in plates in which the ratios of crack depth to plate thickness and crack length 
to plate width are small.   In the present analysis, a magnification factor is developed 
to account for the effects of finite plate thickness and crack-tip plasticity.   The mag- 
nification factor is an approximation based on a crack-tip stress analysis and a 
plastic-zone analysis for plates having coplanar through-cracks. 

Irwin Stress Intensity Factor 

The opening-mode stress intensity factor along the boundary of an internal ellip- 
tical flat crack in a body subjected to remote uniform tensile stress a normal to the 
plane of the crack is given by Irwin (ref.  1) as 

KJcp) = -t/^ (a2 cos2cp + c2 sin2'cp) (la) 
$ j c 

where 

/ 

$ =   / [sin cp + — cos cp )       dcp (lb) 
c2 

'0 

and  cp  is defined by x = a sin cp, z = c cos cp  for a crack oriented and dimensioned as 
in figure 1.   (All symbols are defined in appendix F.) 

With  c > a, the stress intensity is largest at a value of  cp   equal to  is/2, which 
occurs at x = ±a  and  z = 0, the points of intersection of the ellipse with its minor 



axis.   The maximum stress intensity factor on the elliptical boundary, hereinafter de- 

noted simply by  Kp is 

KT = dbn (2) 

As defined in equation (lb), $   is a function of the ratio of the axes of the ellipse 
a/c.     For long cracks for which  a/c  approaches zero, <£   approaches 1 and the stress 

intensity factor is 

Kj = or Vra (3) 

In reference 1, the effect of plastic deformation at the crack tip is accounted for by 
augmenting the depth of the crack by  Kj/(4ff^/2 Y ), a term derived from the assumption 

of plane strain near the crack tip, in which  Y  is the uniaxial yield strength.   With this 

correction, equation (2) becomes 

?ra 
2 

$2 - o. vn(SL\ 

(4) 

Effect of Sheet Thickness 

In this analysis, the three-dimensional problem of deep elliptical cracks is approxi- 
mated as a plane problem in which the crack border near the minor elliptical axis is 
assumed to be straight.   Accordingly the magnification factor developed in this section 
is intended to apply to elliptical cracks for which the depth-to-length ratio is small.   It 
is further assumed that the magnification of the stress intensity near the minor axis of 
a long, elliptical, internal crack in a plate of finite thickness, as shown in figure 2(a), 
can be approximated by that for a through-crack that is one of a series of coplanar 
cracks in a plate, as shown in figure 2(c). 

The opening-mode stress intensity factor for the latter case was given in refer- 
ence 4 and is derived in reference 5 (p.  35) from the Westergaard stress function for 
coplanar cracks.    It is expressed by 

Kj = a V^b i(*-\ (5) 



in which b  is half the length of the through-crack, W  is the spacing of the coplanar 
cracks, and 

tan 1^ (6) 
W 

It can be seen in equation (6) that  f(b/W) reduces to unity for small b/W, in which case 
equation (5) becomes 

Kj = a yfjfb (7) 

Hence the function f(b/W) can be viewed as a magnification factor multiplying the stress 
intensity factor for an isolated crack.   It is now assumed that a similar magnification 
factor of the form  f(a/t) for a long, internal crack of depth  2a  in a plate of thickness  t 
can be applied to the stress intensity factor in equation (3).   The magnified stress inten- 
sity factor is then 

KT = aVffaf(i^ (8) -„V=«(s) 

in which 

t>Ji tan IB: (9) 

The correction function of equation (9) was proposed in reference 5, in which the accur- 
acy of the thickness correction was stated to be doubtful (p„  51) if the crack-tip plas- 
ticity subtends a major portion of the distance from the crack tip to the back face of the 
plate.   The correction function (eq. (9)) should therefore be altered to include the effect 
of crack-tip plasticity and should reflect the dependence of the plastic enclave size on 
plate thickness, crack shape, and applied load. 

Effect of Crack-Tip Plasticity 

If yielding occurs at the tip of the crack and extends a distance ahead of the crack, 
a fraction of this distance should be added to the actual crack length in the stress inten- 
sity expression to account for effects of the yielded zone, as discussed in reference 6. 
Consequently, the crack dimension  a  in equations (8) and (9) is replaced by  a + AR, in 



which A.R is a fraction of the length R  of the plastic zone.   The stress intensity factor 

for a long internal flaw thus corrected is 

VH?(ltX!) KT = a*/t tan (10) 

In reference 1, Irwin proposed that the plastic-zone correction factor   1 + X(R/a) be 

equal to   1 + K2/a(47r yß Y2) as long as the ratio of applied stress to yield strength  a/Y 

is sufficiently small.    For   a/Y  or  a/t  not sufficiently small, this correction factor 

may underestimate the extent of crack-tip plasticity.   In appendix A of this report, the 

plastic-zone correction factor is derived for a plate cut by a series of coplanar cracks. 

When applied to the plastic zone near the minor axis of a long internal elliptical crack 

in a plate of thickness t, the correction factor analogous to that of equation (A6) be- 

comes 

1 + X — = — arc sin 
a     7ra 

7ra 

sin- H) 
.a. 

(ii) 

In equation (11), ay  is the tensile stress normal to the plane of the crack at the elastic- 

plastic interface.   The length  R  of the zone of plasticity ahead of a crack in a plate 

that contains a series of coplanar cracks is derived in reference 7 and rederived in ap- 

pendix B.   This plastic-zone analysis relates  R  to the crack spacing  W, applied 

stress  o, and crack length  2b by 

W R = — arc sin sec ■no 

2^ 
(12) 

It is now proposed that an analogous expression be used to estimate the size of the 

plastic enclave in front of a long internal crack of depth  2a  in a plate of thickness  t. 

In the analogous expression, the through-crack length  2b would be replaced by the 

corresponding internal crack dimension  2a, and the dimension W  replaced by the thick- 

ness  t.   The resulting expression for the length of the plastic enclave at the root of the 

internal flaw is 

R = - arc sin 
IT 

sec ■no 

2(T„ 
(13) 



Insertion of the plastic enclave length of equation (13) into equation (11) results in the 
following expression for the plastic-zone correction factor: 

R     t 1 + x _ = — arc sin 
a     7ra 

„.    7ra 0 ire sm — sec  
t 2ay 

(14) 

The stress at the elastic-plastic interface, appearing as  (Ty  in equations (11) 
to (14), is very sensitive to the degree of constraint at the crack tip.   Certainly in the 
case of surface cracks and internal cracks, plastic deformation at the crack tip is highly 
constrained and <7y  is larger than the uniaxial yield strength.    Exactly how much larger 
is difficult to assess because the degree of constraint depends on the size of the plastic 
enclave and the distance from the crack tip to the stress-free surface.   If this distance 
is large relative to the plastic enclave length (fig. 3), enough constraint is provided by 
surrounding elastic material to increase  Oy to perhaps several times the uniaxial 
yield strength.   If, however, plasticity spreads from the crack tip to the free surface, 
there is little constraint and (Ty  mav ^e only slightly larger than the uniaxial yield 
strength.    Specific values of (Ty  can be derived from the examination of the stress 
state at the elastic-plastic interface. 

State of Stress at Elastic-Plastic Interface 

Consider that the plastic enclave has spread to a length  R  in front of a flat surface 
crack in a plate, as shown in figure 3.   Of particular interest is the point (a + R, 0, 0) 
on the elastic-plastic boundary nearest the uncracked stress-free surface.   The elastic 
strain component  ez  at this point is related to the stress components by 

ez = — (az - zxrY - jxrx) (15) 
E 

in which  E   is Young's modulus and  p  is Poisson's ratio. 
In the case of a long internal crack, the radius of curvature of the crack front is 

large near the point (a + R, 0, 0).   Hence, the problem can be represented as a plane 
problem; and, if the plastic enclave depth is small relative to the crack depth, the de- 
formation condition in the region near the point (a + R, 0, 0) is reasonably approximated 
by plane strain.   In this case 

CTZ = ^CTX + ay) (16) 



The Von Mises condition for yielding requires that 

(orx - ay)2 + (ay - az) ' + (ax - az) ' + 6(Txy + Tyz + TXZ) = 2Y* (17) 

At the point (a + R, 0, 0), the shear stress components  Tyx, rYZ, and  TXZ   are zero 

because of symmetry; and the yield condition reduces to 

((TY - crv)2 + (<rv - az)   + (ax - az)   = 2Y X 'Y 
(18) 

The ratio oy/Y is obtained from the solution of equations (16) and (18), as 

a _Y 

Y 

n-1/2 

(l-v + u2)(l+ — )   -3 — 
a. Y/ 

(19) 

Thus the ratio  ay/Y  is a function of   v  and the ratio  Oyjo^.    The latter ratio is 

highly dependent on the size of the plastic enclave and on the proximity of the leading 

edge of the plastic zone to the opposite free surface of the plate. 

To determine  ay/Y accurately for the general case would require the solution of 

a three-dimensional elastic-plastic boundary value problem.   In the present analysis, 

the ratio vx/Oy for a long internal crack is assumed to be the same as that for one of 

a series of coplanar through-cracks, as derived in appendix C.   When referred to a long 

internal crack of depth  2a  in a plate of thickness  t, the relation corresponding to equa- 

tion (C7) in appendix C is 

a X 

cr 

cr,7 

= 1 
cr. 

w. 

• 2/?ra\       2/;ror sin I — isec (  
Vt / \2a 

(20) 

Solution of equations (13), (19), and (20) for the special case of a highly constrained 

plastic zone (R  approaches zero) results in 

(21) 
Y      1 - 2V 



and for the case in which the plastic zone reaches the surface (a^ = 0), 

a _Y 

Y V 
(22) 

1 - v + v 

Magnification Factor for Long Internal Cracks 

The stress intensity factor for a long internal flaw uncorrected for either plasticity 

or thickness effects is given as  cry77a  in equation (3).   The ratio of the corrected stress 

intensity factor to the uncorrected stress intensity is found by dividing equation (10) by 

CT Y77a.   A similarly defined ratio is referred to in reference 2 as the magnification fac- 

tor.   In the present work this ratio for long internal cracks is 

Mi = tan 
7ra 

7ra/1 + xR 11/2 
(23) 

Solution of equations (14), (19), (20), and (23) would give  M.   as a function of  a/t, a/Y, 

and  p. 

APPLICATION TO DEEP SURFACE CRACKS 

In references 1 and 5 the stress intensity factor for internal elliptical cracks in 

infinitely thick plates (eq. (2)) is modified to apply to semielliptical surface cracks by 

use of a correction factor that accounts for the effect of the cracked, stress-free face 

of the plate.   The resulting stress intensity factor for surface cracks, modified to re- 

flect crack shape effects but uncorrected for crack-tip plasticity or plate thickness, is 

given in reference 5 as 

KI0 = 1 + 0. 12 ?-3 d\ira* (24) 

in which 

a* = ■ (25) 
$ 



and the bracketed term in equation (24) represents the correction for the effect of the 

stress-free cracked surface of the plate, and the term  $     in equation (25) reflects the 

effect of crack shape. 
In the previous section, a magnification factor for long internal cracks was devel- 

oped (eq. (23)) that incorporates the influences of plasticity and plate thickness.   It is 

now suggested that this magnification factor, used with the corrections of equations (24) 

and (25), could represent the magnification effect for deep surface cracks.   As an ap- 

proximation to the influence of crack shape on the magnification, it is proposed that 

the term  a*  that appears in equation (24) be used in place of the crack depth  a  and 

that the surface-crack depth-to-thickness ratio a/t  replace the internal-crack depth- 

to-thickness ratio  2a/t  inequations (13), (14), (20), and (23).   Accordingly, equa- 

tion (20) becomes 

r 

Z= l -JL 
°Y{ 

i - 
\2t/ \2or. 

•1/2 

(26) 

The plastic-zone correction factor in equation (14) is now 

1 + x IL = .1L arc sin 
a*     7ra* 

1/2. 

sinft ^ 
\2   t 

ir er  Y seel  
\2 Yor- 

(27) 

The length of the plastic zone from equation (13) becomes 

r 

2t R = — arc sin <( 
7T ■Kf) 

, ir   a sec - (28) 

Using the front surface correction of equation (24) and the thickness correction of 

equation (23), the stress intensity factor is written 

Kj = a i/7ra* M 

where from comparison with equations (23) and (24), 

(29) 

M -H^-ÄMir^ (30) 

10 



The development of equation (30) assumes no interaction between the stress-free front 

and back surfaces. 
Solution of equations (19), (26), (27), (29), and (30) enables one to express the 

stress intensity factor for a surface flaw as a function of applied stress,  crack length, 
crack depth, plate thickness, yield strength, and Poisson's ratio. 

Figure 4 shows the factor  M  calculated from equations (19), (26), (27), and (30) 
plotted as a function of a/t  and  a/Y for  v  equal to 0. 3, 0. 4, and 0. 5, and for  a/2c 
equal to 0. 0, 0. 25, and 0. 50.   The enlarging effect of the stress-free surface on the 
stress intensity factor for deep flaws is clearly indicated in this figure.   The increase 
in the magnification factor with increase in the ratio of gross area stress to yield 
strength is due to growth of the crack-tip plastic enclave as accounted for by the 
plastic-zone correction term in the analysis. 

With  R  computed according to equation (28), the condition   R ä t - a  is assumed 
to represent a condition for which the analysis is invalid.   The upper regions of the 
curves of figure 4 were computed for increments at  a/t  of 0. 005, and the end points of 
the curves are the highest achieved values of  a/t with  R < t - a.   These points are 
thus approximations to the condition of  R = t - a, which is the condition for which the 
plastic zone is computed to have reached the opposite face of the plate. 

Because of the approximations involved in the derivation of the stress intensity fac- 
tor for surface-cracked plates, it is desirable to test its applicability by comparing 
fracture toughness values computed from fracture data having large ranges of the ra- 
tios  a/2c, a/t, and  a/Y. 

FRACTURE TOUGHNESS VALUES COMPUTED FOR SURFACE-CRACK DATA 

The major usefulness of an analysis for the stress intensity factor is that it can 
often be used as a fracture criterion.   Values of  Kj    computed from tests of suitable 
specimens have been found to agree with values of  Kj    computed for failed structures. 
If such a correlation is to exist, then values of  Kj    computed for a set of specimens of 
a given material in a given environment should be constant (independently of variations 
in the crack or specimen geometry).   The usefulness of the analyses of references 1 
and 3 and of the present report will therefore be compared by applying these analyses 
to specimen fracture data from the literature.   The computed toughness values will be 
designated as  KJc Ir, KIc Kob, and KIc And, respectively.   The relative ranges of 
crack geometry over which these toughness values are essentially constant will then be 
compared.   The response of the computed values of fracture toughness to the variables 
of the crack geometry will be observed by fitting the constants of the following model 
(eq. (31)) to the results of specimen tests for particular materials and environments: 

11 



«-«*+M?)+b»(*)+b»(?)+M£ 2cj 
J23 (31) 

where  u  is a computed value of fracture toughness. 
The response given by equation (31) can be exhibited by plotting contour lines of 

constant  u  on the coordinates of the crack geometry, namely, a/t  and  a/2c.   Such 
plots are shown for values of u  equal to  KIr, , , KJc Kob, and Kjc AncJ.   These plots 
distinguish the regions of the  a/2c, a/t  plane for which the particular  Kj    is relatively 
constant from those regions over which the computed  IC    varies significantly.   Com- 
parison of such plots permits comparisons of the relative sizes of the  a/2c, a/t  regions 
for which the different analyses for  Kj    produce essentially constant values. 

Epoxy Data 

Fracture specimens of a brittle material are useful for investigating the effects of 
crack geometry because the complicating effects of crack-tip plasticity are minimized. 
Results from a large number of specimens containing semielliptical surface cracks were 
presented in reference 8.   These specimens were prepared from a fairly brittle epoxy 
resin system cast into sheets 0. 14 to 0. 25 inch (3. 6 to 6. 3 mm) thick.   Some properties 
of this material are given in table I.   A reference value of  IC    had been determined 
from single-edge-notch tension specimens (for which the stress intensity analysis is 

TABLE I. - MATERIAL PROPERTIES 

Material Test environ- 
ment 

Poisson's 
ratio 

Yield strength Ultimate 

ksi k'N/m2 
strength 

ksi kN/m2 

Cast epoxya Ambient air 0.38 5.5 38 8.7 60 

Aluminum alloy Liquid nitrogen 0.31 67. 1 464 85.5 590 

2219-T87b 

Liquid hydrogen 0.36 71. 5 484 92.9 641 

Titanium alloy Liquid nitrogen d0. 36 177.9 813 185.5 1280 

Ti-5Al-2. 5Sn-ELIc 

Liquid hydrogen d0.42 201.7 1390 205.7 1420 
aCIBA Araldite 502/956; 0. 14 to 0. 25 in.  (3. 6 to 6. 3 mm) thick; data from 

ref.  8. 
Longitudinal grain, 0.625 in. (16 mm) thick; data from ref.   10. 

cTransverse grain, 0. 22 in. (5. 6 mm) thick; data from ref.   10. 
dT Value determined using longitudinal-grain specimens. 

12 



fairly certain), and was reported as 541. 6 psii/in. (0. 596 MNm    '  ).   Based on this 

value the specimen dimensions far exceed the currently recommended minimum values 
(crack depth and specimen thickness greater than 2. 5 Kjc/Y, ref. 9).   Surface-crack 
specimens had been prepared by forcing a sharp-edged tool into the surface while the 
specimen was stressed in bending.   Minimum values of specimen length-to-width and 
width-to-crack-length ratios were 2 and 4,  respectively.   The values of  a/2c  and a/t 
achieved are shown by the plotted points of figure 5.   (The contour lines of fig.  5 will 
be discussed in a subsequent section.) 

Examination of the joint response of computed  Kj    to values of a/2c  and  a/t  is 
readily accomplished if curves of  Kj    as a function of a/t  can be plotted for a suc- 
cession of constant values of  a/2c.   An approximation to this objective was achieved by 
partitioning the data into sets having nearly constant values of  a/2c.   The sets are de- 
fined by values of a/2c  as follows:   0. 15±0.01, 0. 19±0.01, 0.23±0.01, 0. 27±0.01, 
0. 31±0. 01, and 0. 35±0. 01.   More than half of the available data (58 of 100 tests) lie 
within these very narrow bands. 

Computed values of  Kjc Ir, KJc Kob   and  KJc And were plotted as ordinates 
against values of  a/t  as abscissa, for the previously defined approximately constant 
values of  a/2c, for the epoxy data.   These plots are shown as figures 6(a) to (f).   The 
plots show a small downward trend of  KIe And, a slightly steeper downward trend for 
KIc Kob' and a much steeper downward trend of  Kjc ,    with  a/t  at the larger values 
of  a/t.   The plots are not in conflict with the commonly made observation that a down- 
ward trend of  Kjc j    occurs if  a/t  is larger than 0. 5. 

By doubling the width of the narrow  a/2c  bands used earlier (to ±0. 02 about the 
same central values), all but four tests out of 100 may be included.   Values of  K,    . 
for these 96 specimens are plotted in figure 7, where the effect of both geometric vari- 
ables (a/2c  and a/t) may be readily seen.   As mentioned earlier, there is a small 
downward trend of  Kjc And with increasing  a/t.    There also appears to be a slight 
layering tendency; that is, KJc And appears to be slightly lower for the lower values of 
a/2c.   In addition, the random scatter appears to be fairly high, but this may be typical 
of cast polymeric materials.    However, the reference value  Kj   = 541. 6 psi\/irü seems 
to be central to the data spread of figure 7. 

The response of the computed values of fracture toughness to the geometrical vari- 
ables of the epoxy specimens was observed by fitting the constants of equation (31) to 
the results of the tests of 100 specimens.   The fitted model (eq. (31)) was divided on 
both sides by the quantity  KJc = 541. 6 psi\/in7 (0. 596 MNm-3/2), and contour lines for 
the resulting ratio were determined for values of the ratio; that is, computed fracture 
toughness divided by  KJc   of 0. 8, 0. 9,  1. 0,  1. 1, and 1. 2.   The plots are shown by fig- 
ure 5.   The closeness of the contour lines of figure 5(a) shows that values computed from 
the Irwin analysis for fracture toughness vary rather rapidly with  a/t  and a/2c; 
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whereas, as shown by figures 5(b) and (c), the variation of  K.£c Kob  and  KjcAnd  is 

relatively less rapid with a/t  and a/2c. 

Data for Aluminum and Titanium Alloys 

The metallic specimens of reference 10 were tested in two cryogenic liquids, and 
some properties of these materials in these environments are also given in table I. 
The values of a/t and a/2c for the metallic specimens are displayed in figures 8 to 11. 

The plots of figures 8 to 11 show relatively uniform distributions of  a/t  over the 
range from 0. 4 to 0. 8; whereas, the values of a/2c  were concentrated in two or three 
relatively narrow zones about discrete values of a/2c.   These concentrations permitted 

computed values of KIc Ir, KJc Kob, and KIcAnd to be plotted for varying a/t at 

essentially constant values of a>2c.   The results are shown in figures 12 to 19.   In 
many cases, the values of  cr/Y  and a/t  were larger than the largest values commonly 
regarded as acceptable for the Irwin analysis.   The values of  K^ Kob  and K^ And 

were computed only for those specimens where computations suggested that the plastic 

zone had not reached the rear surface. 
Some of the plots of figures 12 to 19 (particularly those for the titanium base alloy) 

show a downtrend of KJc And with a/t at approximately constant a/2c.   In these cases, 
the downward trend was slightly steeper for KIc>Kob and still steeper for KIcIr.   For 
all three analyses, the responses of the computed values of K to a/t in figures 12 to 19 
suggest that the computed K values vary more rapidly with a/t at the smaller values of 

a/2c. 
Values of Kj   And have been plotted against  a/t  in figures 13, 15, 17, and 19 for 

the stated materials and environments and for the values of  a/2c  given by the symbols. 
Figure 13 shows no trend of  KJc And with crack geometry.    Figure 15 suggests that 
Kj increases slightly with'a/2c, particularly at the larger values of  a/t, and 

that  KT    A d  decreases slightly with  a/t  for the smaller values of  a/2c.   Figure 17 
also suggests that  KJc And  increases with  a/2c  at the larger values of  a/t.   Com- 
pared to the results for the aluminum base alloy, figures 17 and 19 for the titanium base 
alloy show strong decreases of  KJc And with  a/t  for any value of a/2c. 

The inconstancy of the plotted values of figure 17 suggests that the specimen dimen- 
sions might not have been adequate for a valid measurement of fracture toughness.   In 
particular, the criterion  a > 2. 5 (KIc/Y)2  was advanced in reference 9 as a sufficient 

criterion for adequate specimen crack depth.   The data of figure 17 will be examined to 
see how they compare with this criterion.   The lowest plotted value is 46 ksi^inT (50. 5 
MNm"3//2) and thus the conceivably lowest allowable value for  a/t  is 

a_ 2.5 /   46   \2 = n 7fi 

t     0.22X177.9/ 
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Therefore, almost all the points of figure 17 lie below this possibly too high lower limit 

for  a/t.   The conclusion must be that none of the specimens of figure 17 clearly met the 

criterion of reference 9. 

The lowest value of  KIc And plotted in figure 19 leads to the condition 

a     2.5/ 39. 5 \   _ Q_ 44 

t     0.22X201.7 

Thus some of the specimens of figure 19 might have had sufficiently large values of 

crack depth to furnish correct values of  KI(;.   Inspection of figure 19 shows a cluster 

of approximately constant values of  KIc And  in the range of 0. 60 < a/t < 0. 85 with a 

median value of  KIc = 43.1 ksi y/in. (47'MNm"  ' ).     For such a value of  KIc, the 

limit on  a/t  is 

a=A!/i3J_\2       .52 
A201.7/ t    0.22X201.1) 

Thus, the criterion advanced in reference 9 appears to account for the continuously 

varying KT    .   ■,  of figure 17 and for the division point between varying  K-    A^  and 

constant  K-    .d  in figure 19. 

Similar trends were reported in the literature for titanium alloys and maraging 

steels for  Ky    ■, , even with a/t < 0. 5.    Some data for maraging steels and discussion 

of the trends are given on pages 30 to 33 of reference 9. 

The model, equation (31), was fitted to the computed values of   K  for the aluminum 

and titanium alloy specimens and contour lines of fitted  K were plotted as shown by 

figures 8 to 11.   (In the case of  Kj    »nd for the aluminum base alloy tested in liquid 

nitrogen, none of the coefficients of variables in eq. (31) were statistically significant 

and no contour lines were plotted.) 

The plotted points of figures 8 to 11 show the ranges of conditions of the experiments 

and. therefore show the ranges over which the model should be assumed to be valid.   Con- 

tour lines close together show sensitivity of the computed  K to the geometry.   In most 

cases, the contour lines for  Kj    T     are closer together than were the comparable 

lines for  Kj    K ,, and the  Kj    K ,    lines are closer than the  K,    And  lines.   There- 

fore, Kr    A   ,  is concluded to be less sensitive to specimen geometry than the other 

analyses. 

In some cases, the contour lines were parallel or approximately parallel to the  a/2c 

axis, showing an insensitivity of the computed  K to  a/2c, but a sensitivity to  a/t.   In 

some cases, the reverse effect is observed.   In all cases, for any given material and en- 

vironment, the orientation of the contour lines for all the analyses was about the same; 
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however, orientation differed markedly for the two materials, the computed fracture 
toughness being somewhat sensitive to  a/2c  for the aluminum (fig. 9) and being clearly 

sensitive to  a/t  for the titanium (figs.  10 and 11). 

Ranges of Approximately Constant Fracture Toughness 

In figure 5(c) the contour lines labeled 0. 9 and 1. 1 bound a region (between them) 
where the value of  KJc And   is within ±10 percent of the edge-crack value.    For sim- 
plicity, this region can'be closely approximated by the rectangular region bounded by 
0. 15 < (a/2c) < 0. 35, 0. 45 < (a/t) < 0. 85.   Within these limits, then, values of 
KT    A d were aPProximatelv constant and approximately equal to the  KJc value ob- 
tained from edge-crack specimens.   No reference  KJc  values were reported for the 
2219-T87 aluminum alloy.   However, the tests in liquid nitrogen (not plotted; see pre- 
ceeding section) and the contour plot of figure 9(c) suggest that the range of constant 
KI    A d (±10 Percent) is at least as large as that established for the epoxy specimens. 
This may also be seen in figures 13 and 15, where the average value of  KIc And  is 
about 45 ksi^mT (49 MNm"3'   ) in either cryogenic liquid. 

Application of the criterion of reference 9 suggests that the following minimum 

values of crack depth apply: 

For the conditions of figure 13, 

a   .   =2.5[-^M   =1.12 min 
./45_ 

\67.1 

For the conditions of figure 15, 

V71.5/ 
a   .   =2.5 -^-]   =0.99 mm 

Both these values exceed the specimen thickness; however, the approximately constant 
values of KT    »   d  of figures 13 and 15 seem to have reasonable magnitudes. 

For the titanium-5Al-2. 5Sn alloy tested in liquid nitrogen and in liquid hydrogen 
(figs.  10 and 11), the values of  Kj    Ir, ^-Ic>Kdb, and KIcAnd varied quite rapidly 
with  a/t  except for the  KJc And for liquid hydrogen (fig.  11(c)).   Again, no  KIcKob 

or  K,    A      values were computed if either analysis indicated that the plastic zone had 
reached the rear face.   The fact that most of the resulting  Kjc  values varied consider- 
ably with  a/t   suggests that a more severe restriction on specimen geometry is needed 
to identify specimens that will give constant  K,    values in the case of titanium-5Al- 
2. 5Sn.   The criterion  a > 2. 5 (K~ /Y)    as advanced in reference 9 is appropriate to the 
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present data for the titanium alloy but appears unnecessarily restrictive for the alumin- 
um alloy. 

CONCLUDING REMARKS 

In an early investigation, G. R. Irwin (ref.  1) derived an expression for the stress 
intensity factor for surface cracks in a plate with crack depths less than half the plate 
thickness.   The present and previous investigations have shown that apparent fracture 
toughness values computed according to the Irwin analysis decrease with increasing 
crack depth-to-thickness ratio as this ratio increases beyond about 0. 5. 

The method proposed in this investigation for computing stress intensity factors 
for deep part-through cracks attempts to account for the effect of crack-tip plasticity 
and the effect of the free surface opposite the crack.   The magnification factor was ex- 
pressed as a function of the ratio of applied stress to yield strength, the ratio of crack 
depth to crack length, the ratio of crack depth to sheet thickness, and Poisson's ratio. 
In addition, the method contains a criterion for deciding if plasticity has progressed 
from the crack tip to the defect-free surface.   If this condition is met or exceeded, the 
analysis is regarded as invalid for the computation of elastic stress intensity factors or 
for plane-strain fracture toughness. 

The proposed analysis was applied to some surface-crack specimen data from the 
literature.   Computed values of the fracture toughness were reported for those speci- 
mens for which analysis indicated that fracture occurred prior to the spread of a plas- 
tic zone to the defect-free surface.   The materials and environments included a cast 
epoxy in room-temperature air, and aluminum and titanium alloys in liquid nitrogen 
and liquid hydrogen.    Except for the titanium base alloy, the computed critical stress 
intensity factor was found to remain essentially constant (constant within ±10 percent) 
over wide variations of the crack depth-to-length ratio (0. 15 to 0. 35) and over wide var- 
iations of the crack-depth-to-specimen-thickness ratio (0. 45 to 0. 85). 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, July 6,  1970, 
124-08. 
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APPENDIX A 

PLASTIC-ZONE CORRECTION FACTOR FOR COPLANAR THROUGH-CRACKS 

The elastic stress function for a remotely tensioned plate having a series of equally 
spaced, coplanar through-cracks is given by Westergaard in reference 11. 

In this solution, the component of stress directly ahead of the crack that acts in a 
direction normal to the crack plane is given as a function of the distance   r  from the 
crack tip in reference 12 as 

a   = a 
y 

sin _2_7Tb 

W 

sin2I(b_±_r) 
W 

•1/2 

(Al) 

in which b  is the half-length of the crack, W  is the spacing of crack centers, and  a 

is the remote tensile stress.   If the elastic solution for stress near the crack tip given 
by equation (Al) is applied to ductile materials, then under sufficient load, some region 
of material at the crack would be computed to be above the yield point.   The appropriate 
assumption is that yielding takes place along some distance  R from the crack tip as 
shown in figure 20.   Equilibrium conditions require that stress in excess of the yield 
stress must be borne by adjacent elastic material.   The resulting stress distribution 
for a nonhardening material might be similar to that indicated by the dashed curve in 
figure 20.   Clearly, in this case, equation (Al) does not describe the stress distribution 
within the yielded region, nor does it accurately apply to the surrounding elastic region. 
In reference 6, Irwin suggests that the effect of stress relaxation is equivalent to that 
of an increase in crack length.   This effect is shown in figure 20 in which the half- 
length of the equivalent crack is represented by b  which is longer than the half-length 
of the actual crack by an amount  AR, where  AR  is a fraction of  R.   The stress distri- 
bution of equation (Al) should now be referred to a new coordinate system in which  r 
is the distance from the end of the equivalent crack, in which case 

v 
sin .2 jfb 

W 

sin 2 77(b + r) 

W 

-1/2 

(A2) 
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From figure 20, 

b = b + A.R (A3) 

and 

R= (1 - X)R (A4) 

At the elastic-plastic interface, r   equals   R  and  a    equals  oy.    From equations (A2) 

to (A4), 

cry = cr 

sin2J*fl+*^ 
W \      b 

Sin
2l*(l + K 

W \      b 

■1/2 

(A5) 

Then the plastic-zone correction factor can be derived from equation (A5) as 

■p '1X7' 

1 + X — = — arc sin ^ 
b     7rb 

a 
1/2 7Tb   1 + 

R 

sin 

-\ 

W 
(A6) 
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APPENDIX B 

LENGTH OF PLASTIC ENCLAVE FOR COPLANAR THROUGH-CRACKS 

D.  S. Dugdaie (ref.  13) has derived an expression for the length of the plastic en- 

clave at the tip of a crack in an infinitely wide plate.   The following derivation is an ex- 

tension of his analysis to a plate having a series of coplanar cracks. 

Consider a series of coplanar cracks of length  2b   spaced W from center to cen- 

ter in a plate subjected to a remote tensile stress  a.   For a ductile material,  consider 

that yielding occurs at the crack tip and extends a distance  R  in front of the crack, as 

shown in figure 21.   As in the Dugdaie analysis, the plastic zone is assumed to be an 

extension of the crack. 

If the entire plastic zone is considered as part of the crack, the total length of the 

resulting virtual crack is  21 = 2(b + R).   The stress ahead of the virtual crack (fig. 22) 

is approximated by equation (Bl), which can be derived from the Westergaard stress 

function for a series of coplanar cracks and is given in reference 12 as 

iy 

sin2Ei 
W 

sin2 *<* + r> 

1-1/2 

(Bl) 

W 

Close to the virtual crack tip (v/l « 1) the stress component is 

a1v = af-W-tan^l/2 (B2) 

The stress ahead of the virtual crack is less than that given by equation (B2) be- 

cause the material within the plastic enclave partially constrains displacement of the 

virtual crack border.   This constraining effect can be idealized as indicated in figure 23 

in which a stress  ap  in the plastic enclave acts on the virtual crack border and tends 

to close the crack.   An expression for the stress ahead of the virtual crack due to the 

action of crp  is derived by first considering the stress in front of a crack of length  I 

caused by a pair of negative splitting forces   P  acting on the crack border as shown in 

figure 24.   The stress distribution on the right end of the crack caused by the splitting 

forces can be derived from the stress function in reference 14 as 
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-P cos H «/sin2 li- sin2 l! 

ofy(P) =- W w w 

W sin *(' + r)   sin SJLtll - Sin II 
W W w 

sin 2JTZ 

W 

sin2l!L±_E) 
w 

(B3) 

Similarly, the additional stress on the right side of the crack caused by a pair of 

splitting forces  P'   on the left side of the crack is 

^Vp,) = i ■ P'  COS II - /«i"2 **-  -  =i"2 ll 
W 

sin sin 
W W 

WsinlÜ-Ui 
W 

sin*(L±£) + sin!l 
w w 

sin 2Td 

W 

2 n(l + r) sin 
W 

(B4) 

For values of  r  very near the crack tip (r « I), equations (B3) and (B4) reduce to 

•&» - 

P     r.~c   ff£ — COS —2 
W W 

2rtr   .    trl     „ irl   sin — cos — 
W W W 

1/2 

sinl* +sinH 
W 

sin Hi 
w 

sin 

(B5) 

and 

  COS —2 

»Si»-).. W w 

2Hsini^cosli\ 
WWW/ 

1/2 

sin 
W 

sin ll 
W 

smli + sinU 
W W 

,1/2 

(B6) 

The stress ahead of the crack due to ap   can be derived by treating the splitting forces 

P  and  P'   as Green's functions.   When equations (B5) and (B6) are added and integrated 

between  i; - b  and  £ = I   to account for splitting forces distributed at both ends of the 

crack, the resulting stress ahead of the crack, as shown in figure 25, is 
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a„   = a*   + o L   . _R W\      W/TT / ^ W    \W/ (B7) 

27      ^      ^     <*IISin?Lcosl!L)1/2 /        (sin2^-sin2H)1/2 

w      w      w/    <       \     w w/ 

Taking crp as constant and equal to the yield stress 0y and completing the integration 

gives 

(sinl^ 
?-arc sin—JL\ (B8) 
2 sin£Z_ 

v W, 

The total stress near the tip of the crack is obtained by adding equations (B2) and (B8) 

I / 2a sin^ 
a   =a1u + ff9v = Jl. tan *i I a - a„ + -1 arc sin ^ | (B9) 

y     iy    ^y   y 27rr     w \      *     vr sin jd 

W; 

At the elastic-plastic boundary (r = 0), the stress  cr    is finite.   Hence, the bracketed 
term on the right side of equation (B9) must equal zero; that is, 

a-av+_Jarcsin[  ÜL | = 0 (BIO) 

Isinl^ 
\     w, 

Since  I = b + R, equation (BIO) can be rearranged to give the plastic-zone length as a 

function of b, W, aY, and a 

* = W arc sin/sin^ sed^-) - 1 (Bll) 
b     7Tb \     w 2crY/ 

It should be noted that an equation of similar form can be derived from the results 
of the dislocation stress analysis of reference 15, which treats an infinite array of co- 
planar cracks in a plate subjected to remote shear stress. 
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APPENDIX C 

CONSTRAINT OF PLASTIC ENCLAVE 

An approximation to the effect of a stress-free surface on the stress ratio ov/a-y 
at the elastic-plastic interface can be made by use of the exact solution for a plate cut 
by a series of coplanar through-cracks as described in appendixes A and B.   For this 
geometry, the stresses  cr    and cr    directly ahead of the crack are given in refer- x y 
ence 12 as 

sin2Ib 
■1/2 

a   =a|l-__JL   I (Cl) 
y 

sin2 ra 

and 

sin2 2* 
■1/2 

1/2 

o   =a (1 W   j (C2) 

1       sin2-™  ' 
W, 

in which OQ    is a uniform stress in the x-direction.   Then the ratio of the stress com- 
ponents is 

/     sin2!* 
!? = i-!^[i- w , (C3) 
ay CT   \      sin2H 

\ w. 

The condition of a stress-free surface requires that  cr    equal zero at x  equal to 
W/2.   By substituting a   = 0  and x = W/2  in equation (C2), GQ    is found to be equal 

r       2        T1/2 

to cr 1 - sin (ffb/W) .   When this value is substituted for  CTQ    in equation (C3), the 
boundary condition for the stress-free surface is met at the point (W/2, 0) directly ahead 
of the crack and is approximated in the region near that point.   By making this substitu- 
tion and solving equations (Cl) and (C3), 
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er 

ff 
= 1 

1-sin2^ 
W/ 

1/2 
(C4) 

At the elastic-plastic interface  ax = ax  and a   = aY  so that 

CT 

1 - sin 2_7Tb\ 

W/ 

1/2 
(C5) 

When crack-tip plasticity is taken into account, the dimension  b  should be re- 

placed by b(l + XR/b) as given by equation (A6) of appendix A.   Thus 

2.i.la 
CT, 

a 
J7b(l+Ü 

. 2      V      b sin     

■1/2 

W 
(C6) 

The plastic enclave length  R is given by equation (Bll) of appendix B, which when 

solved with equation (C6) results in 

'X = 1 -^-J JL sin—)   | sec 
W 

7TCT 

2crx: 

-1/2 
(C7) 
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APPENDIX D 

COMPUTATIONAL PROCEDURES FOR PROPOSED MAGNIFICATION FACTOR 

The equations involved in the computation of  M are (19), (26), (27), and (30).   The 
quantity  Y/cTy  of equation (27) cannot be obtained as an explicit function of the variables 
remaining after the elimination of <*yr/aY from equations (19) and (26).   The lack of an 
explicit function for  cx/Cy  requires the use of an iterative procedure.    The procedure 
used was as follows: 

Let 

q1=cos(I^_Ucos[I£X) (Dl) 
1 \2aYl \2YcrY/ 

q2 = sing^ (D2) 

(D3) 

where, in general, 

a_ _ a _Y 
ay    YaY 

and from equation (25) 

a* _ 1   a 
t      *2 t 9 

As an initial approximation let 

(D4) 

(D5) 

(D6) 
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Y_ 1/2 
(D7) 

4(1 - v + /) 

With the preceding value of Y/aY, equation (26) can be solved for ox/vY 
as follows: 

ü*=l 

51X 
Ycr„ 

(1 - q) 1/2 
(D8) 

and with the preceding value of vx/Oy, and improved value of Y/crY can be obtained 

from equation (19) as follows: 

CTY 

-,1/2 

(1- „ + v
2)(l+^\   -3°X 

C\ tf. 
(D9) 

This improved value of Y/cry is substituted in the preceding equations for q^ and q3 

and an improved value of crx/(jy is computed leading to a still further improved value 
of  Y/(Xy.   This type of iteration was continued  i  times until 

,(T, 

_Y 

lor. 
i-1 

< 0.001 (D10) 

Hov/ever, if the preceding specification was not met before  i = 50, the operation was 

judged uncomputable. 
On suitable convergence of the computation of  Y/Oy, a value of 

Q= [1 + X R 
) 2 t 

was computed from equation (27); namely, 

Q = arc sinlq,/   — 
1 «1, 

(Dll) 
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and from equation (30) 

a/2 

M 1 + 0. 12 (1 - ± 
c 

tan Q) 

— ~ 
2 t 

(D12) 

Let  K0 =o{ira*)1/2.   Then from equation (29) 

KI,And=K0M (D13) 

From equation (28), the fraction of the uncracked region penetrated by the plastic zone 
is 

R   -2   *     arcsinf^     a* 
t - a   n t - a \*V t - a 

(D14) 
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APPENDIXE 

COMPUTATIONAL PROCEDURES USING KOBAYASHI-MOSS ANALYSIS 

An expression for the stress intensity factor was given as equation (4) in reference 3 

as follows: 

IW^eV^f (E1) 

The value of M    is called the elastic magnification factor and is given by 

M   = IVLM, (E2) e        in 

where  Mh  is defined to be a magnification factor due to the stress-free back surface 
and where   M1  is defined to be the magnification factor due to the stress-free front sur- 

face 

2 
M1= I.O + O.I2/1.O -*-\ (E3) 

In order to provide for the computer reduction of data from experiments, a poly- 
nomial approximation was developed for  Mh  from curves in an unpublished Boeing 

Company report.   The approximation is as follows: 

If  0.3 <-< 0.77, 

Mh = 0. 951 + 0. m(-\ + 0. 08o/-^\ - 0. 832^   + 0. 362/5Y-L\ - 0. 5Bof—\ 

00 2 3 
+ 1.010/B\   - 1. 136/^) /_a-\ + 0. 70I/BVJ_\    + 0. 351 f±\ (E4) 
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If   0. 77 ^ - ^ |0. 77 + 0. 3/i-\ 

Mh = 0. 920 + 0. 591^\ + 0.04(|L\   - 1. 581^^ + 0. 937/^\/L\ _ 0. 923 

♦ 1.635(?)
3 - ,. 84^)2(|.) + 0. 958(5)(i)2 + 0.600(A)3 (E5) 

[o.,7+o.3(iLcy - < 0.97, 
t 

M,  = 2. 441 - 3. 455/B\ + 4. \±4— 
U 2c 

5. 093(-Y— 2. 029/— 
\2c, 

3 3 
+ 2.919^   +3.046/'--\ (E6) 

No approximations were developed for the ranges  0. 0 g a/t < 0. 3   or  0. 97 < a/t < 1. 0 

since no experimental results were available for these regions. 

Values of M& were computed for several values of a/2c and a/t and the results 

are represented by the dashed lines of figure 26. The solid lines of figure 26 represent 
the results given in figure 2 of reference 3. 

In reference 3, b  is defined as the radius of a penny-shaped crack that is equivalent 

to the existing elliptical crack, d  is defined as an extended crack radius of a Dugdale 

model, and  aQ   is defined as "the maximum uniaxial tensile stress prescribed at the 

physical crack tip of  r = a. "   Equations (6), (7b), and (7a) of reference 3 give relations 
among the variables as follows: 

b = (E7) 

m = 1 (E8) 
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7T •     b - + arc sin - 
2 d 

(E9) 

The analysis as thus far presented contains one more unknown than the number of 

equations.   This difficulty is easily remedied if either  m   or   CTQ   can be regarded as 

known.   In the data reduction of the present investigation, m  was assumed to be unknown 

and  vQ  was assumed to be the ultimate tensile strength of the material. 

The analysis was assumed to be invalid, and values of  Kj  were assumed to be not 

computable for the condition 

d > b + t - a (E10) 

(This condition is to be compared with eq. (9) of ref. 3.) 
The value of  M    is to be computed from equation (8) of reference 3, which is 

Y arc cos - 
™2 d 

P       or(l - m) a(l - m) 
«f-1 

1/2* 
(Ell) 
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APPENDIX F 

SYMBOLS 

a depth of surface crack or half-depth of internal crack 

a* a/$ 

b half-length of through-crack 

b half-length of equivalent crack (fig. 20) 

bg, bj, b,, coefficients of eq. (31) 

c half-length of surface crack or internal crack 

i, j integers 

E modulus of elasticity 

Kj opening-mode stress intensity factor 

Kj plane-strain fracture toughness 

Kj    .   j fracture toughness computed according to this report 

Kj    J fracture toughness computed according to ref.  1 

Kj    K , fracture toughness computed according to ref. 3 

KJQ stress intensity factor for surface crack, uncorrected for plasticity or 
plate thickness 

I half length of virtual crack 

M magnification factor for semielliptical surface crack 

M. magnification factor for long internal elliptical crack 

P, P' negative splitting force per unit thickness 

R extent of plastic zone in plane of crack 

R equivalent plastic zone, eq. (A4) 

r radial distance from actual or virtual crack tip 

r distance from end of equivalent crack (fig. 20) 

t sheet thickness 

W coplanar through-crack spacing 

x, y, z Cartesian coordinates (fig.  1) 

Y uniaxial yield strength 
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e€€ conventional elastic strain components in x-, y-, and  z-directions, 
x'    y'    z 

respectively (fig. 1) 

X equivalent crack length multiplier 

v Poisson's ratio 

£ distance of negative splitting forces from crack centerline 

CT uniform remote gross area stress acting normal to plane of crack 

v stress in plastic enclave 

a , a , a stresses in x-, y-, and z-directions, respectively 
x'   y'   z 

a„   av, a„ stresses in x-, y-, and z-directions, respectively, at elastic-plastic 

interface 

$ complete elliptic integral of second kind 

(p coordinate angle (fig. 1) 

T„„, TV,,, TV7   components of shear stress at elastic-plastic interface 
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Figure 1. - Dimensions of crack and orientation of coordinate 
axes with respect to crack. 
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crack. through-crack. 

(c) Series of coplanar straight-front 
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Figure 2. - Approximation of crack-front conditions for a long elliptical flaw in a 
plate of thickness t by crack-front conditions for a series of coplanar cracks. 
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Figure 3. - Crack geometry including plastic enclave. 
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Figure 4. - Stress intensity magnification factor (eq. (30)), for various values of Poisson's ratio v, the ratio of crack depth to crack length 

a/2c, and the ratio of applied stress to yield strength  o/Y. 
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Equation (31), best fit 
O       Geometryof test specimen 

Ratio of crack depth to plate thickness, a/t 

(a) Fracture toughness computed according to reference 1. (b) Fracture toughness computed according to reference 3. 
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(cl Fracture toughness computed according to this report (eqs. (29) and (30)). 

Figure 5. - Contour lines of constant computed fracture toughness ratio for epoxy specimens, tested in air.  Crack geometry shown by plotted points. 
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Figure 7. - Computed fracture toughness (eqs. (29) and (30)) for all epoxy specimens, tested in 
air.  (Data from ref. 8.) 

39 



 Equation (31), best fit 
O     Geometry of test specimen 

Tailed symbols denote that computed 
plastic zone extended completely 
through the thickness 
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(b) Fracture toughness computed according to reference 3. 

Figure 8. - Contour lines of constant computed fracture toughness for 2219-T87 
aluminum alloy specimens tested in liquid nitrogen at -320° F (77 K).  Crack 
geometry shown by plotted points. 
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  Equation (31), best fit 
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Figure 9. - Contour lines of constant computed fracture toughness for 2219-T87 aluminum alloy specimens tested in liquid hydrogen at 
-423° F (20 K). Crack geometry shown by plotted points. 
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Figure 10. - Contour lines of constant computed fracture toughness for titanium-5AI-2.5Sn-ELI alloy specimens tested in liquid nitrogen 

at -320° F (77 K). Crack geometry shown by plotted points. 
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Figure 11. - Contour lines of constant computed fracture toughness for titanium-5AI-2.5Sn-ELl alloy specimens tested in liquid hydrogen at 
-423° F (20 K). Crack geometry shown by plotted points. 
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Figure 24. - Negative splitting forces. 

50 



^2y(öP,l,r» 

Figure 25. - Stress ahead of virtual crack caused by Op. 

•S    1.40 

£    1.30 — 

1.20 

1.10 

1.00 

Flaw depth ratio, a/t 

Figure 26. - Polynomial approximation to elastic stress intensity mag- 
nification factor of reference 3. 

NASA-Langley, 1970  32       E-5708 51 



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

WASHINGTON, D. C. 20546 

OFFICIAL BUSINESS FIRST CLASS MAIL 

POSTAGE AND FEES PAID 
NATIONAL AERONAUTICS AND 

SPACE ADMINISTRATION 

70272  00942 
01U 001 42   50 30S 
PICATINNY ARSENAL 

oPSv™.,%IE
J

C
E

H
R

NIE
e
y*l0«*rr,ONeENT" 

ATT  SMUPA-VP3 ^ 

POSTMASTER: 
If Undeliverable (Section 158 
Postal Manual) Do Not Return 

"The aeronautical and space activities of the United States shall be 
conducted so as to contribute . . . to the expansion of human_ knowl- 
edge of phenomena in the atmosphere and space. The Administration 
shall provide for the widest practicable and appropriate dissemination 
of information concerning its activities and the results thereof." 

— NATIONAL AERONAUTICS AND SPACE ACT OF 1958 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: Scientific and 
technical information considered important, 
complete, and a lasting contribution to existing 
knowledge. 

TECHNICAL NOTES: Information less broad 
in scope but nevertheless of importance as a 
contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: 
Information receiving limited distribution 
because of preliminary data, security classifica- 
tion, or other reasons. 

CONTRACTOR REPORTS: Scientific and 
technical information generated under a NASA 
contract or grant and considered an important 
contribution to existing knowledge. 

TECHNICAL TRANSLATIONS: Information 
published in a foreign language considered 
to merit NASA distribution in English. 

SPECIAL PUBLICATIONS: Information 
derived from or of value to NASA activities. 
Publications include conference proceedings, 
monographs, data compilations, handbooks, 
sourcebooks, and special bibliographies. 

TECHNOLOGY UTILIZATION 
PUBLICATIONS: Information on technology 
used by NASA that may be of particular 
interest in commercial and other non-aerospace 
applications. Publications include Tech Briefs, 
Technology Utilization Reports and Notes, 
and Technology Surveys. 

Details on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

NATIONAL  AERONAUTICS AND SPACE ADMINISTRATION 
Washington, D.C. 20546 


